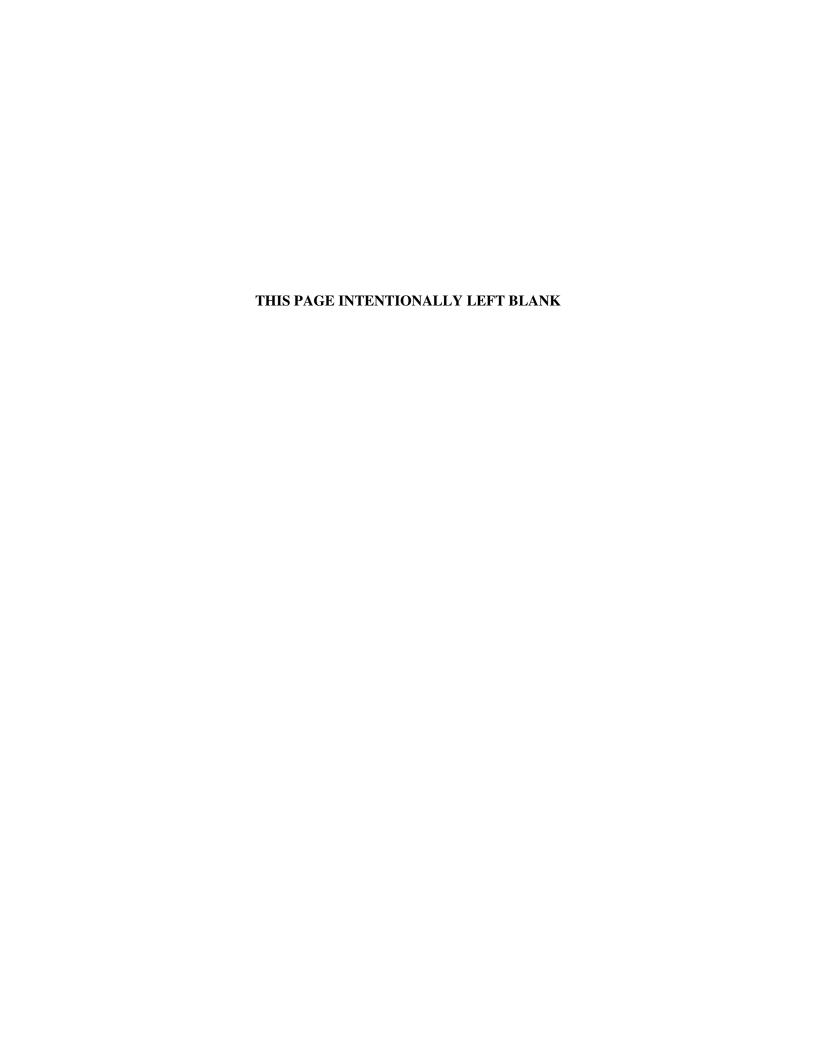
CUTAWHISKIE CREEK STREAM AND WETLAND RESTORATION SITE 2011 ANNUAL MONITORING REPORT (YEAR 4)

HERTFORD COUNTY, NORTH CAROLINA NCEEP CONTRACT NO. D06066-A


PREPARED FOR: NCDENR – ECOSYSTEM ENHANCEMENT PROGRAM 1652 Mail Service Center Raleigh, North Carolina 27699-16152

PREPARED BY:
RESTORATION SYSTEMS, LLC
1101 Haynes Street, Suite 211
Raleigh, North Carolina 27604
Tel (919) 755-9490 Fax (919) 755-9492

AND

Atkins North America, Inc. 1616 East Millbrook Road, Suite 310 Raleigh, North Carolina 27609 Tel (919) 876-6848 Fax (919) 828-3518

TABLE OF CONTENTS

1.0	EXECUTIVE SUMMARY
2.0	PROJECT BACKGROUND5
	2.1 Project Objectives
	2.2 Project Structure, Restoration Type, and Approach
	2.3 Location and Setting 6
	2.4 History and Background
3.0	PROJECT MONITORING AND RESULTS9
	3.1 Vegetation Assessment
	3.2 Stream Assessment
	3.3 Wetland Assessment
4.0	METHODOLOGY
5.0	REFERENCES
Vegetat Site Veg	IDIX A: VEGETATION RAW DATA ion Survey Data Tables A1-A6 getation Photo Stations ion Monitoring Plot Photos
Table B Cross-S Longitu	DIX B: GEOMORPHOLOGIC RAW DATA 2. Visual Morphological Stability Assessment ection Plots: B-1 to B-6 and Stream Photos dinal Profile Plot ll Event Photos
	IDIX C: WETLAND RAW DATA ring Gauge Hydrographs
APPEN	IDIX D: CURRENT CONDITIONS AREA PLAN VIEW
	LIST OF TABLES
Table I	Project Restoration Components
Table II	•
Table II	
Table I	•
Table V	3 &
Table V	
Table V	
Table V	·
Table D	• • • • • • • • • • • • • • • • • • • •
Table X	
	10

LIST OF FIGURES

Figure 1.	Site Location	3
•	Current Conditions Plan View	
Figure 3.	Cutawhiskie Creek 30-70 Precipitation Graph	.Appendix C

1.0 EXECUTIVE SUMMARY

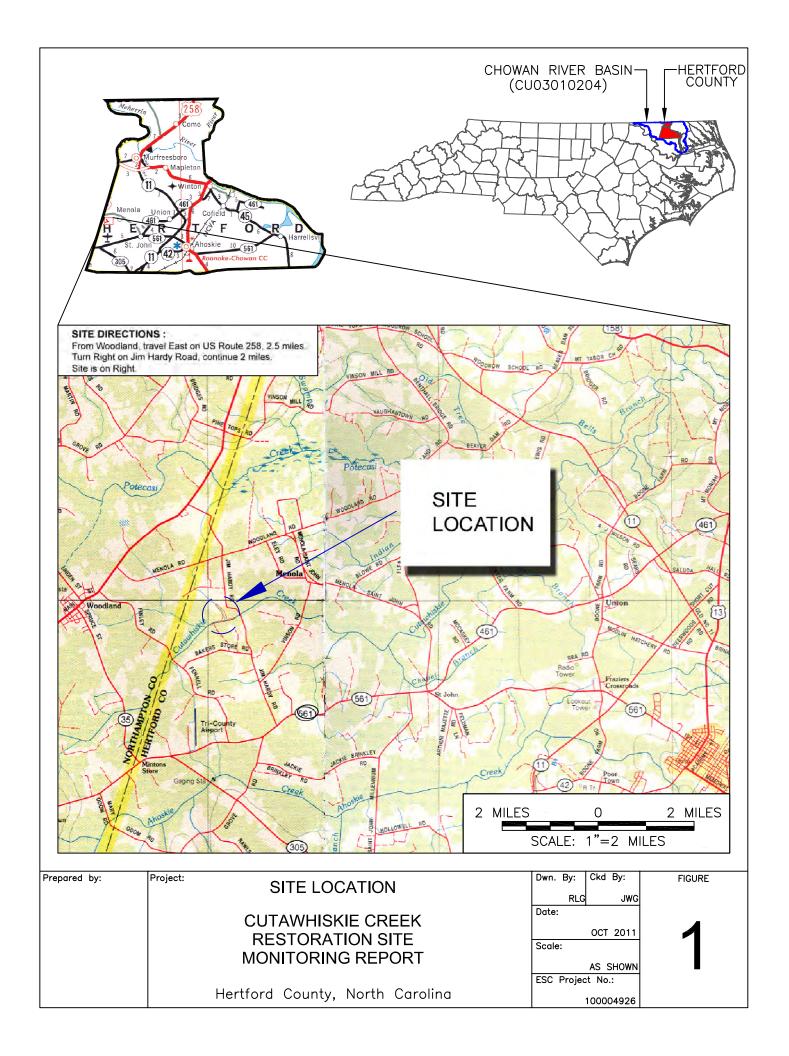
The Cutawhiskie Creek Restoration Site (hereafter referred to as the "Site") was constructed for the North Carolina Ecosystem Enhancement Program (NCEEP) to provide compensatory stream and wetland mitigation in the Chowan River Basin. This restoration project is located on an unnamed tributary (UT) to Cutawhiskie Creek on a 22.9 acre Site located in Hertford County (Figure 1). The project includes stream restoration (Priority 1) and preservation, as well as riparian wetland restoration and enhancement.

The following report summarizes the monitoring activities that have occurred in the fourth year of project monitoring (2011) at the Site. Site construction began and was completed in November 2007. As-built surveys for the Site were performed in February 2008, and first year monitoring was conducted in 2008. To be deemed successful the Site must satisfy vegetative and hydrologic success criteria; and verify restored stream channel stability for a minimum of five years or until the success criteria is achieved. The following report summarizes the results of the 2011 monitoring.

Vegetation Assessment

Vegetation monitoring for Year 4 was performed based on the Carolina Vegetation Survey (CVS) Levels 1 and 2 (Lee et al. 2006). CVS methodology determines density and survival of planted species, and individuals resulting from natural regeneration. Plot locations are shown in Figures 2A and 2b (Appendix D). The taxonomic standard for vegetation follows *Flora of the Southern and Mid-Atlantic States* (Weakley 2010).

Vegetative monitoring success will be achieved if plot data indicates the average number of planted stems exceeds 320 stems per acre after the third year of monitoring and 260 stems per acre after the fifth and final year of project monitoring. Based on Year 4 surveys, the average count of the surviving planted species is 461 stems per acre. If volunteer species are included, the total number of stems increases to 5,771 stems per acre. The Site has met the 4th year criterion and is on target to exceed the established success criteria for vegetation based on the survival of the planted species.


Stream Assessment

Success criteria for the restored stream reach has been established to confirm that no significant changes have occurred to the dimension, pattern, profile, and bed material over the 5-year monitoring period. Location surveys of the constructed features were conducted to verify the performance of the stream. A total station survey was performed to describe the stream longitudinal profile and six permanent stream cross-sections (3 riffles and 3 pools). Overall, the stream channel bed form and banks are stable. Based on the cross-sections, longitudinal profile and visual observations, the channel dimensions have not changed significantly compared to as-built conditions.

Wetland Hydrology Assessment

Success criteria for wetland hydrology require that restored wetland areas be inundated or saturated by groundwater within 12 inches of the ground surface for a period of time during the growing season

THIS PAGE INTENTIONALLY LEFT BLANK

THIS PAGE INTENTIONALLY LEFT BLANK

consistent with other wetlands located in similar settings. The growing season in Hertford County begins on March 28 and ends on November 7 (225 days). In order to achieve hydrologic success, saturation within 12 inches of the ground surface is required for between 12 and 28 consecutive days (5 to 12.5 percent). The results of the Year 4 hydrologic monitoring indicate that all gauges exhibited saturation within 12 inches of the ground surface for at least 7.6 percent of the growing season. The period of saturation ranges from 17 to 44 days or (7.6 and 19.6%) with an average of 29.8 days (13.2%) of the growing season.

2.0 PROJECT BACKGROUND

2.1 Project Objectives

Site restoration activities included the excavation of a new stream channel, limited floodplain excavation, removal of stumps and debris, existing channel backfilling, on-site drainage ditch removal, and final grading and soil preparation within the adjacent floodplain. These activities were proposed in order to reintroduce surface water flood hydrodynamics from a 0.9-square mile watershed along the newly restored length of stream and floodplain. The new channel was constructed to reflect regional stream characteristics and accommodate bankfull flows. Characteristic wetland soil features, groundwater wetland hydrology, and hydrophytic vegetation communities are expected develop in areas adjacent to the constructed channel. Wetland and adjacent slope soil surfaces were restored and the Site reforested to promote riparian and upland slope hardwood communities. Plant community associations were designed to mimic various indigenous communities described by Schafale and Weakley (1990), including Coastal Plain Levee Forest, Cypress-Gum Swamp, Mesic–Mixed Hardwood Forest, and Coastal Plain Small Stream Swamp.

Specific ecological benefits anticipated as a result of on-Site restoration activities are as follows:

- Stream channel restoration will reintroduce stable bankfull dimension, pattern, and profile along restored stream reaches, which is expected to enhance lotic habitat quality and stream function.
- Floodplain excavation adjacent to restored streams will restore the characteristic flood regime, as well as provide a lateral hydrologic input to restored wetland areas adjacent to the UT and within the greater Cutawhiskie Creek floodplain.
- Restored and enhanced wetland areas will help to improve water quality via nutrient removal, increase local vegetative biodiversity, provide wildlife habitat, and serve as a forested corridor, linking the Site with adjacent forested areas.

2.2 Project Structure, Restoration Type, and Approach

The primary restoration features within the Site include the UT to Cutawhiskie Creek and approximately 11.9 acres of drained, hydric soils. The UT had been dredged and straightened, such that it did not exhibit stable dimension, pattern, and profile features. Side-cast material (spoil piles) from dredging was deposited along the west bank of the former channel. A moderate headcut (approximately 2 foot drop in elevation over 20 linear feet of stream channel) was observed near the upstream (north) extent of the Site boundary, indicating vertical instability. Due to its high level of entrenchment caused by dredging, large flooding events were confined within the former channel.

On-site restoration activities provide the following project mitigation units:

Cu			Restoration Compon on Site – EEP Contra		
Project Segment or Reach ID	Mitigation Type	Approach	Mitigation Units Linear Footage (LF) or Acreage (AC)	Stationing	Comment
UT to Cutawhiskie Creek (active restoration)	R	P1	2,540 LF	0+00 - 25+40	
UT to Cutawhiskie Creek (passive restoration)	R	NA	359 LF	NA	Passive restoration through floodplain not stationed. Braided reach measured as straight line distance to outfall
Stream Preservation (Cutawhiskie Creek)	P	NA	519 LF	NA	2593 LF actual design units, however only 20 percent is available for SMU
Riparian Wetland Restoration	R	NA	11.9 AC	NA	
Riparian Wetland Enhancement	WE	NA	0.6 AC	NA	1.1 AC actual design units, however only 0.6 LF available as WMU
R = Restoration P = Preservation WE = Wetland Enhancement			P1 = Priority 1 NA = Not applicable		

2.3 Location and Setting

Land uses in the vicinity of the Site consist primarily of agriculture, forest, pastureland, roadside shoulders, and residential lots. Row crops including soybeans, cotton, and corn are actively cultivated on the Site and surrounding areas. The Site is immediately adjacent to active rowcrop agriculture and timberland. There is no livestock or poultry production in the vicinity. Timber is actively harvested from adjacent forested areas. A large, contiguous bottomland hardwood stand was harvested just west of the Site along the Cutawhiskie floodplain in the spring of 2006. The Site encompasses approximately 22.9 acres of primary and secondary floodplain associated with Cutawhiskie Creek. The Site includes a UT that flows into Cutawhiskie Creek from the north (Figure 1). Portions of the Site had been logged prior to restoration activities, while other areas within the Site were actively managed for timber or agricultural production. Prior to restoration, the Site vegetation was generally characterized by bottomland hardwood forests along un-logged areas on the Cutawhiskie Creek floodplain and low

terraces, row crops including soybeans and corn, and successional communities associated with cut-over timberland.

2.4 History and Background

Table II. Project Ac	ctivity and Reporting l	History	
Cutawhiskie Creek Restorati	ion Site – EEP Contra	ct No. D06066-A	
			Actual
	Scheduled	Data Collection	Completion or
Activity Report	Completion	Complete	Delivery
Restoration Plan	N/A*	December 2007	January 2007
Final Design (90 percent)	N/A*	December 2007	January 2007
Construction	N/A*	N/A*	November 2007
Temporary S&E mix applied to entire project area	November 2007	N/A*	November 2007
Permanent seed mix applied to reach/segments	November 2007	N/A*	November 2007
Bare Root Seedling Installation	February 2008	N/A*	February 2008
Mitigation Plan	April 2008	February 2008	April 2008
Minor repairs made filling small washed out areas	N/A*	N/A*	N/A*
Final Report	N/A*	N/A*	N/A*
Year 1 Vegetation Monitoring	November 2008	August 2008	November 2008
Year 1 Stream Monitoring	November 2008	September 2008	November 2008
Year 2 Vegetation Monitoring	November 2009	September 2009	December 2009
Year 2 Stream Monitoring	November 2009	September 2009	December 2009
Year 3 Vegetation Monitoring	November 2010	September 2010	November 2010
Year 3 Stream Monitoring	November 2010	September 2010	November 2010
Year 4 Vegetation Monitoring	November 2011	September 2011	November 2011
Year 4 Stream Monitoring	November 2011	September 2011	November 2011

^{*}N/A- Activities and reporting history for these items are not applicable to this restoration project

	le III. Project Contacts toration Site – EEP Contract No. D06066-A
Prime Contractor	Restoration Systems, LLC 1101 Haynes Street, Suite 211 Raleigh, NC 27604 (919) 755-9490
Designer	Atkins (previously EcoScience Corporation/PBS&J) 1616 East Millbrook Road, Suite 310 Raleigh, NC 27609 (919) 876-6888
Construction Contractor	Anderson Farms 179 NC 97 East Tarboro, NC 27886 (252) 823-4730
Planting Contractor	Carolina Silvics 908 Indian Trail Road Edenton, NC 27932 (919) 523-4375
Seeding Contactor	Anderson Farms 179 NC 97 East Tarboro, NC 27886 (252) 823-4730
Seed Mix Sources	Erosion Supply Company 8817 Midway West Rd Raleigh, NC 27617 (919) 787-0334
Nursery Stock Suppliers	South Carolina Super Tree Nursery Company 5594 Highway 38 South Blenheim, SC 29516 (800) 222-1290
Monitoring Performers	Atkins North America, Inc. 1616 East Millbrook Road, Suite 310 Raleigh, NC 27609 (919) 876-6888
Stream Monitoring POC	Jens Geratz
Vegetation Monitoring POC	Jens Geratz

	ect Background lite – EEP Contract No. D06066-A
Project County	Hertford
Drainage Area	0.9 square miles
Impervious cover estimate (%)	0
Stream Order (UT/ Cutawhiskie Creek)	1st order / 3rd order
Physiographic Region	Coastal Plain
Ecoregion (Griffith and Omernik)	Mid-Atlantic Flatwood
Rosgen Classification of As-built	E5
Cowardin Classification	Stream (R3UB2)
Dominant soil types	Craven fine sandy loam (Aquic Hapludults)
	Leaf loam (Typic Albaquults)
	Wilbanks silty clay loam (Cumulic Humaquepts)
Reference Site ID	Black Branch, Bullard Branch, UT to Town Creek
USGS HUC for Project	03010204
NCDWQ Sub-basin for Project	03-01-02
NCDWQ classification for Project	C-NSW
Any portion of any project segment 303d listed?	No
Any portion of any project segment upstream of a 303d	No
listed segment?	
Reasons for 303d listing or stressor	N/A
Percent of project easement fenced	N/A

3.0 PROJECT MONITORING AND RESULTS

3.1 Vegetation Assessment

Five vegetation monitoring (10 x 10 m²) plots were established to monitor planted vegetation within Site's restoration and enhancement areas. Site vegetation was monitored in accordance with the guidelines and procedures developed by the Carolina Vegetation Survey (CVS) (CVS-EEP Protocol for Recording Vegetation, Level 1-2 Plot Sampling Only, Version 4.0, 2006). Established vegetation monitoring plot locations are displayed on the Current Conditions Area Plan View (Appendix D). Vegetative monitoring success will be achieved by plot data indicating an average number of planted stems exceeding 320 stems per acre after the third year of monitoring and 260 stems per acre after the fifth and final year of project monitoring. During Year 4 monitoring, the Site exceeded the vegetation success criteria with an average of 461 planted stems per acre. If volunteer species are included, the total number of stems increases to 5,771 stems per acre. Table V summarizes vegetation plot density for the first four years of monitoring. Refer to Appendix A for CVS vegetation data collected during Year 4 monitoring.

Chinese privet (*Ligustrum sinense*), an exotic invasive, was found growing densely along the lower reach of the stream channel. During the winter of 2010, the Prime Contractor (Restoration Systems LLC) initiated their plan to manage exotic species Chinese privet on the Site. Dense thickets of Chinese privet

were sprayed along the southwestern Site boundary (Figure 2A and 2B, Appendix D) and solitary specimens located along Cutawhiskie Creek. Given the vigorous nature of Chinese privet, the Site will continue to be monitored in order to maintain control of the species.

Table V. Vegetation Plot Summary Planted Stems per Acre Cutawhiskie Creek Restoration Site – EEP Contract No. D06066-A														
Plot MY-01 MY-02 MY-03 MY-04 MY-05														
1	728	688	688	526										
2	688	647	647	567										
3	688	688	567	607										
4	688	486	324	243										
5	567	486	394	364										
MEAN	672	599	518	461										

3.2 Stream Assessment

In order to document stable bankfull dimension, pattern, and profile along the restored channel, annual stream assessment surveys (longitudinal profile and six channel cross-sections) were undertaken (locations shown on Figure 2A and 2B, Appendix D). The longitudinal profile and channel cross-section plots are located in Appendix C. Channel geomorphic data is summarized on Tables VIII and IX. Success criteria for stream restoration include 1) successful classification of the reach as a functioning system (Rosgen 1996) and 2) channel permanence indices indicative of a stable stream system. Overall the stream survey data indicates a stable channel with very little lateral or vertical movement; balanced aggradation/degradation processes; and a rapidly developing, diverse riparian buffer. One bankfull event documented on August 27, 2011 (Hurricane Irene) further demonstrates stream stability. This is the fourth bankfull event that has been documented during the past four years of monitoring. No stream problem areas were identified during Year 4 monitoring.

	Table VI Hydrological (Bankfull) Verifications Cutawhiskie Creek Restoration Site – EEP Contract No. D06066-A													
Date of Date of Data Collection Occurrence Method Photo Number														
11-16-09	11-14-09	Photo documentation	See 2009 Monitoring Report											
03-04-10	03-03-10	Photo documentation	See 2010 Monitoring Report											
11-18-10	09-28-10	Photo documentation	See 2010 Monitoring Report											
09-09-11	08-27-11	Photo documentation	Photo 1-2, Appendix B											

	able VII. Cate Cutawhiskie Cro			•		
		Segment/I	Reach: 2,540 fe	eet		
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05
A. Riffles	100%	100%	100%	100%	100%	
B. Pools	100%	100%	100%	100%	100%	
C. Thalweg	100%	100%	100%	100%	100%	
D. Meanders	100%	100%	100%	100%	100%	
E. Bed General	100%	100%	100%	100%	100%	
F. Bank Condition	100%	100%	100%	100%	100%	
G. Rock Vanes	N/A	N/A	N/A	N/A	N/A	
H. Root Wads	N/A	N/A	N/A	N/A	N/A	

Table VIII. Baseline Morphology and Hydraulic Summary Cutawhiskie Creek Restoration Site – EEP Contract No. D06066-A

Cutawniskie Creek Re								one – El	er Com	ii aci m). DUUU)U-A						
Parameter	USC	SS Gage	Data	Regiona	al Curve	Interval	Pre-Ex	isting Co	ondition	Proj	ect Refer Stream	ence		Design		As-built		
Dimension	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean
BF Width (ft)	N/A	N/A	N/A	N/A	N/A	9.0	8.4	9.6	9.1	7.2	9.8	8.7	6.0	8.0	7.0	6.4	7.5	7.0
Floodprone Width (ft)	N/A	N/A	N/A	N/A	N/A	N/A	12	13	12.5	175	225	200	150+	150+	150+	150+	150+	150+
BF Cross Sectional Area (ft ²)	N/A	N/A	N/A	N/A	N/A	9.5	64	137	100.5	9	11.5	10.2	7.0	11.0	9.0	6.6	10.4	8.7
BF Mean Depth (ft)	N/A	N/A	N/A	N/A	N/A	0.9	0.9	1.1	1.0	1.1	1.3	1.2	0.7	1.4	1.3	1.0	1.4	1.2
BF Max Depth (ft)	N/A	N/A	N/A	N/A	N/A	N/A	1.5	1.7	1.6	1.5	1.9	1.7	1.5	3.5	1.8	1.5	3.1	2.4
Width/Depth Ratio	N/A	N/A	N/A	N/A	N/A	10.0	8.7	9.3	9.0	5.5	8.4	7.4	4	5.7	5.4	6.4	5.4	5.8
Entrenchment Ratio	N/A	N/A	N/A	N/A	N/A	N/A	1.3	1.4	1.35	20.3	23.1	21.4	1.2	5.9	>18.0	1.2	5.9	4.3
Wetted Perimeter(ft)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	7.6	35.6	17.6
Bank Height Ratio	N/A	N/A	N/A	N/A	N/A	N/A	3.4	5.0	4.2	1.1	1.3	1.2	1.0	1.1	1.0	1.0	1.1	1.0
Hydraulic radius (ft)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.7	1.2	0.9	0.7	1.2	0.9
Pattern																		
Channel Beltwidth (ft)	N/A	N/A	N/A	N/A	N/A	N/A	N/A*	N/A*	N/A*	12.0	113.0	38.3	28.0	49.0	40.0	28.0	49.0	40.0
Radius of Curvature (ft)	N/A	N/A	N/A	N/A	N/A	N/A	N/A*	N/A*	N/A*	7.0	58.0	19.4	9.0	14.0	11.0	9.0	14.0	11.0
Meander Wavelength (ft)	N/A	N/A	N/A	N/A	N/A	N/A	N/A*	N/A*	N/A*	28.0	175.0	75.7	40.0	60.0	50.0	40.0	60.0	50.0
Meander Width ratio	N/A	N/A	N/A	N/A	N/A	N/A	N/A*	N/A*	N/A*	2.1	21.6	8.1	5.7	10	7.9	5.7	10	7.9
Profile																		
Riffle length (ft)	N/A	N/A	N/A	N/A	N/A	N/A	N/A*	N/A*	N/A*	N/A	N/A	N/A	3.0	25.0	12.0	3.2	21.3	11.1
Riffle slope (ft/ft)	N/A	N/A	N/A	N/A	N/A	N/A	N/A*	N/A*	N/A*	N/A	N/A	N/A	0.00	0.050	0.001	0.000	0.082	0.013
Pool length (ft)	N/A	N/A	N/A	N/A	N/A	N/A	N/A*	N/A*	N/A*	5.0	84.0	29.8	4.0	25.0	12.0	4.1	25.6	13.4
Pool spacing (ft)	N/A	N/A	N/A	N/A	N/A	N/A	N/A*	N/A*	N/A*	19.0	113.0	52.6	8.0	30.0	20.0	10.4	36.3	20.0
Substrate																		
d50 (mm)	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	1.5	1.5	1.5	N/A	N/A	N/A	NA	NA	NA
d84 (mm)	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	1.9	1.9	1.9	N/A	N/A	N/A	NA	NA	NA
Additional Reach Parameters																		
Valley Length (ft)		N/A			N/A			2,200			N/A			1,775			1,775	
Channel Length (ft)		N/A			N/A			2,200			N/A			2,540			2,540	
Sinuosity		N/A			N/A			1.0		1.4-1.6				1.4			1.4	
Water Surface Slope (ft/ft)		N/A			N/A			0.0031			0.002			N/A			0.0004	
BF slope (ft/ft)	N/A			N/A			N/A			0.004			N/A			0.0005		
Rosgen Classification	N/A			N/A			G5			E5			E5			E5		
Habitat Index / Macrobenthos		NA			N/A			N/A			N/A			N/A			N/A	
*																		

^{*} No Distinct Riffles and Pools or Repetitive Channel Pattern due to Dredging and Straightening

Table IX. Morphology and Hydraulic Monitoring Summary Cutawhiskie Creek Restoration Site – EEP Contract No. D06066-A

Parameter		C		Section ool	1	Cross-Section 2 Cross-Section Riffle Pool								3				Cross-Section 4 Riffle						
			1 (501																				
Dimension	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5 MY	MY1	MY2	MY3	MY4	MY5	MY	MY1	MY2	MY3	MY4	MY5	MY	
BF Width (ft)	17.4	9.2	22.5	24.7			9.1	6.8	6.7	6.2		26.9	15.5	20.1	23.3			7.9	7.7	7.1	6.3			
Floodprone Width (ft)	150+	150+	150+	150+			150+	150+	150+	150+		150+	150+	150+	150+			150+	150+	150+	150+			
BF Cross Sectional Area (ft ²)	18.9	9.2	20.1	21.9			9.0	8.2	8.1	7.7		26.4	11.5	18.0	22.8			9.4	9.4	8.2	7.3			
BF Mean Depth (ft)	1.1	1.3	0.9	0.9			1.0	1.2	1.2	1.2		1.0	0.7	0.9	1.0			1.2	1.2	1.2	1.2			
BF Max Depth (ft)	2.7	2.2	2.9	2.8			1.9	1.9	1.7	1.9		3.1	2.3	2.5	3.1			1.8	1.8	1.7	1.7			
Width/Depth Ratio							9.2	5.7	5.6	5.2								6.6	6.4	5.9	5.3			
Entrenchment Ratio							16.5	22.0	22.3	16.1								19.0	19.4	21.1	15.9			
Wetted Perimeter(ft)							10.7	8.1	8.0	7.9								9.0	8.9	9.2	9.0			
Hydraulic radius (ft)							0.8	0.8	1.0	1.0								1.0	1.0	0.9	0.8			
Substrate																								
d50 (mm)	Silt	Silt	Silt	Silt			Silt	Silt	Silt	Silt		Silt	Silt	Silt	Silt			Silt	Silt	Silt	Silt			
d84 (mm)	Silt	Silt	Silt	Silt			Silt	Silt	Silt	Silt		Silt	Silt	Silt	Silt			Silt	Silt	Silt	Silt			
Parameter	N	/IY- 01	(2008	3)	N	1Y-02	(2009)	N	/IY-03	(2010)	MY-04 (2011) MY-05					5 (2012) MY+							
Pattern	Min	Ma	ax I	Mean	Min	Ma	ax]	Mean	Min	M	ax Mean	Min	M	ax 1	Mean	Min	M	ax	Mean	Min	Max	: N	Mean	
Channel Beltwidth (ft)	28.0	49	.0	40.0	28.0	49	.0	40.0	28.0	49	0.0 40.0	28.0	49	0.0	40.0									
Radius of Curvature (ft)	9.0	14	.0	11.0	9.0	14	.0	11.0	9.0	14	.0 11.0	9.0	14	1.0	11.0									
Meander Wavelength (ft)	40.0	60	.0	50.0	40.0	60	.0	50.0	40.0	60	50.0	40.0	60	0.0	50.0									
Meander Width ratio	5.7	10	О	7.9	5.7	10	С	7.9	5.7	1	0 7.9	5.7	1	0	7.9									
Profile																								
Riffle length (ft)	4.0	21	.0	11.5	2.4	19	.3	10.0	2.1	18	3.4 10.4	1.0	26	5.7	11.8									
Riffle slope (ft/ft)	0.000	0.0	74 (0.007	0.000	0.0	94 (0.013	0.000	0.0	0.011	0.000	0.0)79 (0.004									
Pool length (ft)	1.0	23	.8	12.5	2.6	22	.7	13.4	3.7	23	14.0	3.2	25	5.1	14.2									
Pool spacing (ft)	9.6	36	.0	20.6	7.7	28	.7	18.3	9.3	32	18.9	8.9	36	5.7	18.2									
Additional Reach Parameters																								
Valley Length (ft)		1,7	75			1,7	75			1,7	75		1,7	775										
Channel Length (ft)		2,5	40			2,5	40			2,5	40		2,5	540										
Sinuosity				1.	4			1.	.4		1	.4												
Water Surface Slope (ft/ft)	0.0004					0.00	004		N/A (dry channel)			0.0006												
BF slope (ft/ft)		0.0005				0.00	005		0.0005			0.0006												
Rosgen Classification		0.0005 E5				E	5		E5															

	Table IX. cont. Morphology and Hydraulic Monitoring Summary Cutawhiskie Creek Restoration Site – EEP Contract No. D06066-A																							
Parameter		(Cross S Ri:	ection ffle	5			(Cross S P	Section ool	6													
Dimension	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+
BF Width (ft)	7.0	7.2	7.4	7.4			15.1	13.7	13.5	12.9														
Floodprone Width (ft)	150+	150+	150+	150+			150+	150+	150+	150+														
BF Cross Sectional Area (ft ²)	6.7	6.2	6.1	5.1			16.8	14.1	12.8	9.6														
BF Mean Depth (ft)	1.0	0.8	0.8	0.7			1.1	1.0	0.9	0.7														
BF Max Depth (ft)	1.4	1.4	1.4	1.1			2.7	2.5	2.7	2.7														
Width/Depth Ratio	7.4	5.1	9.3	10.6																				
Entrenchment Ratio	21.5	20.8	20.3	13.5																				
Wetted Perimeter(ft)	7.8	7.8	8.8	8.9																				
Hydraulic radius (ft)	0.9	0.9	0.7	0.6																				
Substrate																								
d50 (mm)	Silt	Silt	Silt	Silt			Silt	Silt	Silt	Silt														
d84 (mm)	Silt	Silt	Silt	Silt			Silt	Silt	Silt	Silt														

3.3 Wetland HydrologyAssessment

Success criteria for wetland hydrology require that restored areas be inundated or saturated by groundwater within 12 inches of the ground surface for a period of 5 to 12.5 percent of the growing season. The growing season in Hertford County begins on March 28 and ends on November 7 (225 days). In order to achieve hydrologic success, saturation within 12 inches of the ground surface is required for between 12 and 28 consecutive days during the growing season (5 to 12.5 percent). The results of the Year 4 hydrologic monitoring indicate that all gauges exhibited saturation within 12 inches of the ground surface for at least 7.6 percent of the growing season (Appendix C). The average saturation period for all gauges was 29.8 days (13.2%) ranging from 17 to 44 days (7.6 and 19.6%).

Figure 3 (Appendix C) shows a comparison of 2011 monthly rainfall to historical precipitation for Hertford County. The figure shows average rainfall data collected between 1948 and 2011 and compares 30 percent and 70 percent of all observations with the actual 2011 monthly rainfall amounts to determine average. Monthly rainfall amounts were below the 30th percentile during four months of the growing season. Table X summarizes wetland hydrology criteria for Year 4 monitoring.

4.0 METHODOLOGY

No unavoidable deviations from initially prescribed methodologies were implemented as part of Year 4 monitoring activities.

5.0 REFERENCES

- Lee, Michael T., R. K. Peet, S. D. Roberts, and T. R. Wentworth. 2006 CVS-EEP Protocol for Recording Vegetation, Version 4.0 (http://cvs.bio.unc.edu/methods.htm)
- Rosgen, D. 1996. Applied River Morphology. Wildland Hydrology (Publisher). Pagosa Springs, Colorado.
- Schafale, M.P. and A.S. Weakley. 1990. Classification of the Natural Communities of North Carolina: Third Approximation. North Carolina Natural Heritage Program, Division of Parks and Recreation, N.C. Department of Environment, Health, and Natural Resources. Raleigh, North Carolina.
- Weakley, A.S. 2010. Flora of the Southern and Mid-Atlantic States. University of North Carolina Herbarium, North Carolina Botanical Garden, University of North Carolina at Chapel Hill. 944pp.

Table X. Wetland Criteria Attainment Cutawhiskie Creek Restoration Site – EEP Contract No. D06066-A

Hydrology

		Wei	tland Criteri	ia Met	Maximum Consecutive	Total Number of
			T '		Saturated Days	Saturated Days
Monitoring		I	'		(% of growing	(% of growing
Year	Gauge ID	<5%	5-12.5%	>12.5%	season)	season)
	1		✓		17 (7.6)	67 (29.8)
	2*	 	✓		12 (5.3)	82 (36.4)
1	3			✓	59 (26.2)	73 (32.4)
	4		T	✓	57 (25.3)	79 (35.1)
	5		✓		15 (6.7)	37 (16.4)
	1		✓		26 (11.6)	54 (24.0)
	2**	✓			7 (3.1)	32 (14.2)
2	3			✓	29 (12.9)	54 (24.0)
	4			✓	32 (14.2)	59 (26.2)
	5		✓		22 (9.8)	39 (17.3)
	1		✓		14 (6.2)	45 (20.0)
	2		✓		23 (10.2)	63 (28.0)
3	3		✓		19 (8.4)	58 (25.8)
	4*		✓		22 (9.8)	40 (17.8)
	5		✓		12 (5.3)	33 (14.7)
	1		✓		23 (10.2)	67 (29.8)
	2			✓	44 (19.6)	98 (43.6)
4	3		✓		26 (11.6)	77 (34.2)
	4	 I		✓	39 (17.3)	78 (34.7)
	5	i	✓		17 (7.6)	48 (21.3)

Vegetation

Monitoring Year		Tract Density				
1 cai	Plot 1	Plot 2	Plot 3	Plot 4	Plot 5	(Planted Stems)
1	✓	✓	✓	✓	✓	672
2	✓	✓	✓	✓	✓	599
3	✓	✓	✓	✓	✓	518
4	✓	✓	✓	✓	✓	461

^{*}Missing data due to gauge malfunction. In both cases, would have likely extended the maximum consecutive saturated days.

^{**}Gauge moved after year 2 to avoid draining effects of the UT. Initial position was directly adjacent to stream.

APPENDIX A: VEGETATIVE DATA

Table A1: Vegetation Metadata

Parasit Program I Pro	Adam Efird
Report Prepared By	
Date Prepared	10/11/2011 15:28
Database name	Cutawhiskie_2008-2011_CVS Data.mdb
	G:\Projects\Projects06\06-306 Cutawhiskie
	Creek\Mitigation Monitoring\2011 (Year 4)
Database location	Monitoring\Veg
Computer name	RALH3TDXF1
File size	35229696
DESCRIPTION OF WO	RKSHEETS IN THIS DOCUMENT
Metadata	Description of database file, the report worksheets, and a summary of project(s) and project data.
Proj, planted	Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.
Proj, total stems	Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems, and all natural/volunteer stems.
Plots	List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).
	Frequency distribution of vigor classes for stems
Vigor	for all plots.
Vigor by Spp.	Frequency distribution of vigor classes listed by species.
Damage	List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.
Damage by Spp.	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
	A matrix of the count of total living stems of each
	species (planted and natural volunteers combined)
ALL Stems by Plot and Spp	for each plot; dead and missing stems are excluded.
PROJ	ECT SUMMARY
Project Code	D04020
Project Name	Cutawhiskie Stream Restoration
Description	restoration monitoring
River Basin	Chowan
Length (ft)	2,540
Stream-to-edge width (ft)	6
Area (sq m)	8
Required Plots (calculated)	
Sampled Plots	5

Table A2 Vegetation Vigor by Species

	Species	4	3	2	1	0	Missing	Unknown
	Liquidambar styraciflua						1	
	Nyssa biflora	1	12	5	1		9	
	Quercus lyrata		10				3	
	Quercus pagoda	1	3					
	Quercus phellos	1	5	1			2	
	Taxodium distichum	9	8				2	
TOT:	6	12	38	6	1		17	

Table A3.Vegetation Damage by Species

	Species	All Damage Categories	(no damage)	Cut	Unknown
	Liquidambar styraciflua	0	1		
	Nyssa biflora	2	26		2
	Quercus lyrata	0	13		
	Quercus pagoda	0	4		
	Quercus phellos	2	7	1	1
	Taxodium distichum	0	19		
TOT:	6	4	64	1	3

Table A4. Vegetation Damage by Plot

	plot	All Damage Categories	(no damage)	Cut	Unknown
	D06066a-12345-0001-year:4	4	13	1	3
	D06066a-12345-0002-year:4	0	16		
	D06066a-12345-0003-year:4	0	17		
	D06066a-12345-0004-year:4	0	12		
	D06066a-12345-0005-year:4	0	12		
TOT:	5	4	70	1	3

Table A5. Stem Count by Plot and Species

	Species	Total Planted Stems	# plots	Avg # stems	D06066a- 12345- 0001- year:4	D06066a- 12345- 0002- year:4	D06066a- 12345- 0003- year:4	D06066a- 12345- 0004- year:4	D06066a- 12345- 0005- year:4
	Nyssa biflora	19	4	4.75	2	8	8	1	
	Quercus lyrata	10	4	2.5		1	3	3	3
	Quercus pagoda	4	2	2		2			2
	Quercus phellos	7	1	7	7				
	Taxodium distichum	17	5	3.4	4	3	4	2	4
TOT:	5	57	5	3.93	13	14	15	6	9

Table A6. All Stems by Plot and Species

	Species	Total Stems	# plots	Avg # stems	D06066a- 12345- 0001- year:4	D06066a- 12345- 0002- year:4	D06066a- 12345- 0003- year:4	D06066a- 12345- 0004- year:4	D06066a- 12345- 0005- year:4
	Baccharis halimifolia	3	1	3			4		
	Fraxinus pennsylvanica	214	5	42.8	65	34	7	94	14
	Ligustrum sinense	5	1	5	5				
	Liquidambar styraciflua	10	3	3.33	2	6			2
	Nyssa biflora	23	4	5.75	6	8	8	1	
	Pinus taeda	124	4	31	11	25	85		3
	Quercus lyrata	21	4	5.25		1	3	12	5
	Quercus pagoda	10	3	3.33	4	2			4
	Quercus phellos	9	1	9	9				
	Taxodium distichum	17	5	3.4	4	3	4	2	4
	Ulmus alata	21	4	5.25	2	6	8	5	
	Rhus copallinum	2	1	2	2				
	Platanus occidentalis	4	2	2				2	2
	Acer rubrum	250	5	50	11	126	28	38	47
TOT:	14	713	14	12.2	121	211	146	154	81

Photo Stations: Year 4 Monitoring

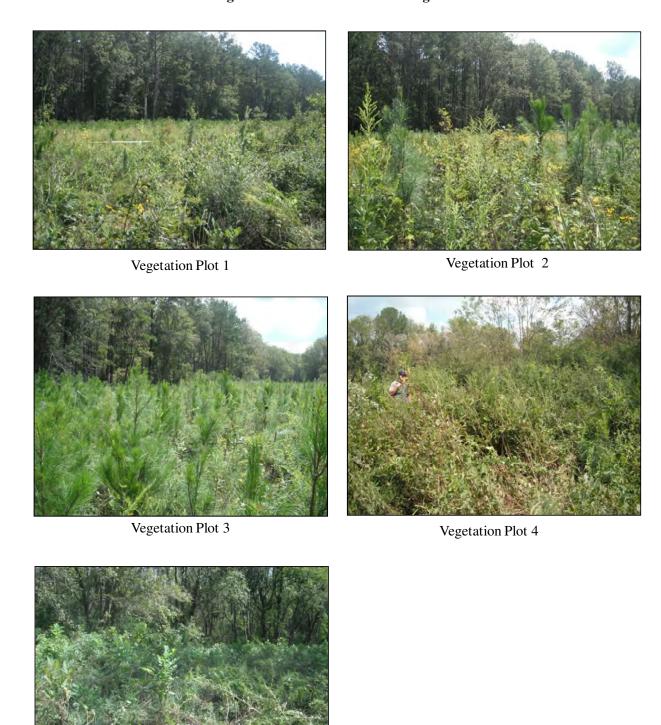
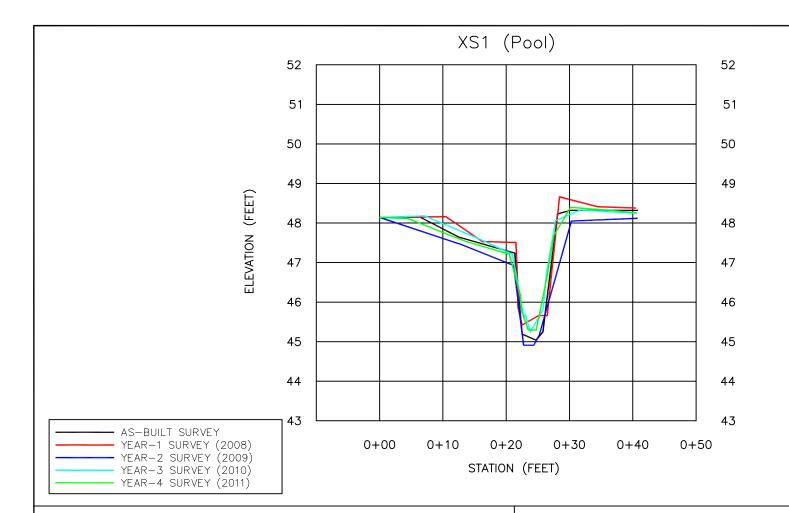


Photo Station 1 Photo Station 2

Photo Station 3

Vegetation Plots: Year 4 Monitoring



Vegetation Plot 5

APPENDIX B: GEOMORPHOLOGIC DATA

Table B2. Visual Morphological Stability Assessment Cutawhiskie Creek Restoration Site – EEP Contract No. D06066-A 2,540 linear feet

	2,540 linear f	eet				
Feature	Metric (per As-built and reference baselines)	(# Stable)	Total	Total	%	Feature
Category		Number	number	Number	Perform	Perform
		Performing	per	/ feet in	in Stable	Mean or
		as	As-built	unstable	Condition	Total
		Intended		state		
A. Riffles	1. Present?	77	77	N/A	100	
	2. Armor stable (e.g. no displacement)?	77	77	N/A	100	
	3. Facet grade appears stable?	77	77	N/A	100	
	4. Minimal evidence of embedding/fining?	77	77	N/A	100	
	5. Length appropriate?	77	77	N/A	100	100%
B. Pools	Present? (e.g not subject to severe aggrad. or migrat.?)	76	76	N/A	100	
	2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?)	76	76	N/A	100	
	3. Length appropriate?	76	76	N/A	100	100%
C. Thalweg	1. Upstream of meander bend (run/inflection) centering?	N/A	N/A	N/A	100	
_	2. Downstream of meander (glide/inflection) centering?	N/A	N/A	N/A	100	100%
D. Meanders	1. Outer bend in state of limited/controlled erosion?	N/A	N/A	N/A	100	
	2. Of those eroding, # w/concomitant point bar formation?	N/A	N/A	N/A	100	
	3. Apparent Rc within spec?	N/A	N/A	N/A	100	
	4. Sufficient floodplain access and relief?	N/A	N/A	N/A	100	100%
	•					
E. Bed	General channel bed aggradation areas (bar formation)	N/A	N/A	0/2540	100	
General	2. Channel bed degradation – areas of increasing down-cutting or head cutting?	N/A	N/A	0/2540	100	100%
F. Bank	Actively eroding, wasting, or slumping	N/A	N/A	0/2540	100	100%
G. Vanes	1. Free of back or arm scour?	N/A	N/A	N/A	N/A	
	2. Height appropriate?	N/A	N/A	N/A	N/A	
	3. Angle and geometry appear appropriate?	N/A	N/A	N/A	N/A	
	4. Free of piping or other structural failures? ³	N/A	N/A	N/A	N/A	N/A
H. Wads/	1. Free of scour?	N/A	N/A	N/A	N/A	
Boulders	2. Footing stable?	N/A	N/A	N/A	N/A	N/A

			DATIA	30111		
	FEATURE	ELEVATION	STATION	FEATURE	ELEVATION	STATION
				LPIN	48.14	0.00
					47.89	4.4
ATKINS					47.31 46.99	13.58 20.48
					45.94	22.27
					45.55	22.44
					45.07	23.49
					45.07	24.73
					46.38 47.45	26.4 27.51
					48.17	30.14
REVISIONS	Ī				48.1	35.97
I REVISIONS	-			RPIN	48.03	40.76
	-					
	 					
						
	<u> </u>					
Client:	 					
RESTORATION			V DATA	SUMMAR		
SYSTEMS LLC						
	.9 SQ. FT.	21		ECTIONAL AREA	POOL CROSS S	
Desirat.	i.7 FT.	24		WIDTH	POOL	
Project:						
CUTAWHISKIE	9 FT.	POOL MEAN DEPTH 0.9 FT.				
				V 050711		
CREEK	8 FT.	2.0		X DEPIH	POOL MA	
RESTORATION	/ <u>A</u>	N/A		OTH RATIO	WIDTH-DE	
SITE	,,	11/		III IVAIIO	WIDITI-DE	
2115	/A	N,		MENT RATIO	ENTRENCH	
	/_	N,		ICATION	CLASSIF	
		1 19/		IOATION	CLASSII	

SUMMAR ECTIONAL AREA	21	.9 SQ. FT.	RESTOR
WIDTH	24	.7 FT.	Project:
N DEPTH	0.9	9 FT.	CUTAW
X DEPTH	2.	8 FT.	CRE
PTH RATIO	N/	/A	RESTOR
IENT RATIO	N,	/A	SIT
ICATION	N ₂	/A	1 ====
			YEAF MONITO

XS1 FROM LEFT BANK TO RIGHT BANK

XS1 LOOKING DOWNSTREAM

NOTES:

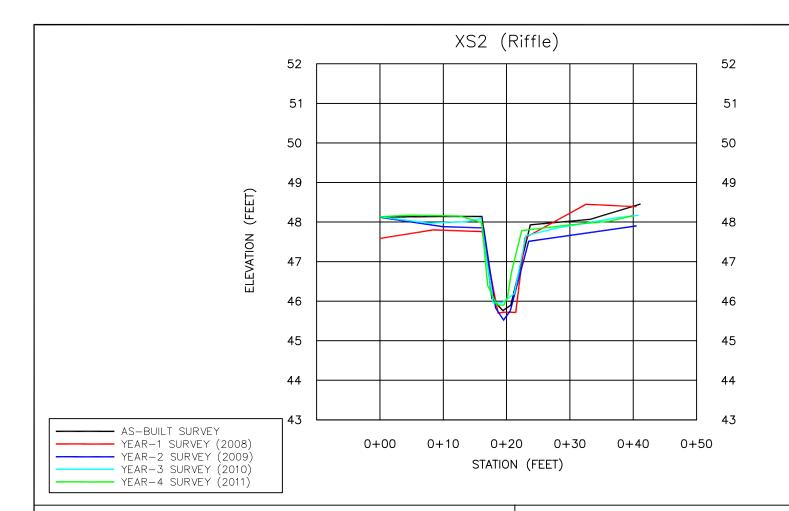
1. All cross—sections facing the downstream direction

Survey Date	SEPT. 2011
Survey Weather	Sunny
Field Team	Schmid, Siceloff
Location	XS1

> \R-4 TORING REPORT

HERTFORD COUNTY, NC

CROSS SECTION XS1-POOL


Dwn. By:

JWG OCT 2011 Scale:

NO SCALE Project No.:

06-306

SHEET

0.00	48.13	LPIN				Ш
5.17	48.17					⊒I _
12.88	48.15					41 🖊
16.46	47.99					- /
17.4	46.39 45.9		-			- -
18.85 19.95	45.9 45.9		l			-11
20.53	46.1		l			-11
21.12	46.7					┨
22.75	47.78					- ∐
29.48	47.91		1			┧┖
36.63	48.02					\vdash
40.58	48.16	RPIN				┧
+0.50	70.10	IXI IIX				1 1 1
						┨
						┨
						┧┝──┤
			1			┧҅
						-
						┨
						┧┝╴╴┪
						┧
						┧┷┷
						11
						11
						71
						1
						11
						▜
						Clie
						71
						71
						71
						71
						71
						71
]
		CHMMIN	RY DATA			
						4
BA	NKFULL CROSS	SECTIONAL AF	REA	7.	7 SQ. FT.	<u>ا</u> ا
						-
	BANKFUI	6.	2 FT.	Proj		
				41 1		
	BANKFULL N	1.	2 FT	-ll		
		4		41		
	BANKFULL	1.	9 FT	- II		
	WIDTH DE	DTIL DATIO		-	^	41
	WIDTH-DE	PTH RATIO		5.		-ll
	ENTRENCH	4.2	5.1	41		
	ENTRENCH	16	D. I	HI .		
	CI VCCIL	FICATION		-	5	=
	CLASSII		J	- 11		

STATION ELEVATION FEATURE | STATION ELEVATION FEATURE

XS2 LOOKING DOWNSTREAM

NOTES:

All cross—sections facing the downstream direction

Survey Date	SEPT. 2011
Survey Weather	Sunny
Field Team	Schmid, Siceloff
Location	XS2

NTKINS

REVISIONS

CUTAWHISKIE CREEK **RESTORATION** SITE

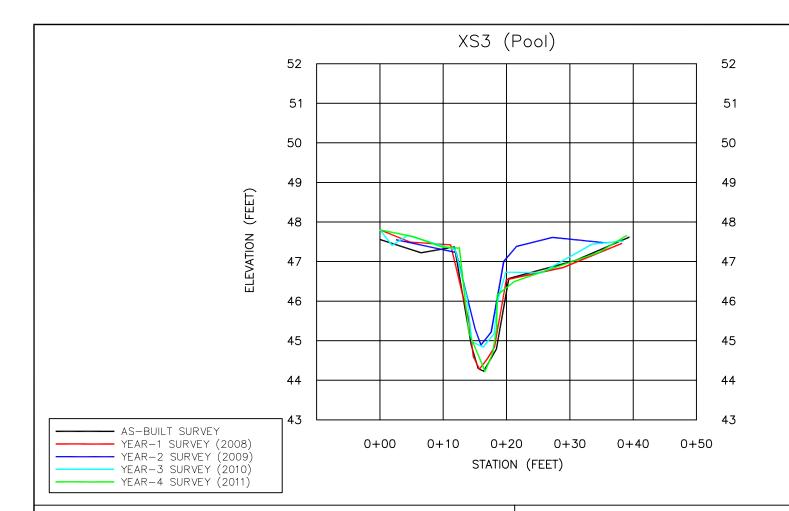
YEAR-4 MONITORING REPORT

HERTFORD COUNTY, NC

CROSS SECTION XS2-RIFFLE

Dwn. By:

Ckd. By: JWG OCT 2011 Scale:


NO SCALE Project No.:

06-306

SHEET

XS1 FROM LEFT BANK TO RIGHT BANK

XS3 LOOKING DOWNSTREAM

_							
-			SURVE	Y DATA			
ſ	STATION	ELEVATION	FEATURE	STATION	ELEVATION	FEATURE	
ı	0.00	47.8	LPIN				
ł	5.32	47.77					
Ì	9.8	47.51					ATIZIA
	12.42	47.48					NTKIN
ļ	12.57	47.49					
ŀ	14.09	45.33					
ŀ	16.64 17.85	44.37					
ŀ	18.47	44.83 45.47					
ł	18.55	46.29					
ł	21.21	46.63					
İ	27.88	47.0					REVISIONS
Ī	34.74	47.38					ILVISIONS
	39.09	47.78	RPIN				
ļ							
ŀ							
ŀ							
ŀ							
ł							
ł							
Ì							1
ĺ] !
ļ							
ŀ							
ŀ							
ł							
l							Client:
Ì							_
ļ							
ļ							
ŀ							
ŀ							
ł							RESTORATION
-			SUMMAR				SYSTEMS LLC
[POOL CROSS S	ECTIONAL AREA	١	22	.8 SQ. FT.	5131EM31LLC
Į							
١	POOL WIDTH				23	.3 FT.	Project:
ŀ	DOOL MEAN DEDTIL				1	O FT.	
POOL MEAN DEPTH				1.0	J FI.	CUTAWHISK	
POOL MAX DEPTH				3	1 FT.	CREEK	
ŀ		1000 100	U. DEI III		J.		
┪		WIDTH-DE	PTH RATIO		N/	'A	RESTORATIO
Ì							SITE
- 1	ENTRENCHMENT DATIO			NI.	/A	ii JiiL	

NOTES:

All cross—sections facing the downstream direction

Survey Date	SEPT. 2011
Survey Weather	Sunny
Field Team	Schmid, Siceloff
Location	XS3

KIE ION SHE

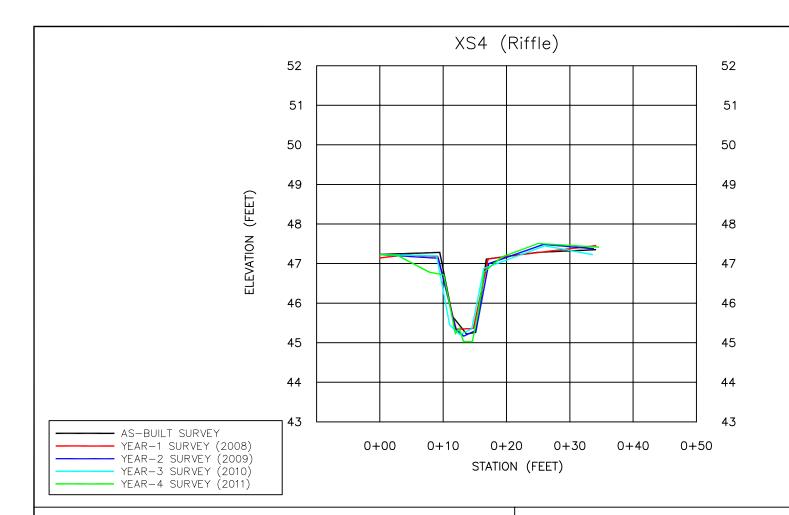
> YEAR-4 MONITORING REPORT

HERTFORD COUNTY, NC

CROSS SECTION XS3-POOL

Dwn. By:

Ckd. By: Date: JWG OCT 2011 Scale:


NO SCALE Project No.:

06-306

SHEET

XS1 FROM LEFT BANK TO RIGHT BANK

				301112	1	
	FEATURE	ELEVATION	STATION	FEATURE	ELEVATION	STATION
				LPIN	47.23	0.00
					47.22	2.91
ATKINS					46.79	8.02
// I K IIV S II					46.73 45.24	10.21
					45.24 45.37	12.06 12.67
					45.04	13.35
					45.04	14.73
					45.83	15.73
					46.8	16.59
					47.18 47.52	19.4
REVISIONS					47.52 47.48	25.13 30.72
				RPIN	47.43	34.74
					171.10	01171
Client:						
The state of the s						
RESTORATION			Y DATA	SUMMAR		
SYSTEMS LLC	3 SQ. FT.	7			NKFULL CROSS	RΔ
Project:	3 FT.	6		L WIDTH	BANKFUL	
•	2 FT.	1 .		MEANI DEDTLI	BANKFULL N	
CUTAWHISKIE	<u> </u>	1		ILAN DEPIH	DAINNIULL	
CREEK	7 FT.	1.		MAX DEPTH	BANKFULL	
RESTORATION						
	3	5		WIDTH-DEPTH RATIO		
SITE		15		MENT RATIO	ENTRENCHA	
	7.3	13		ILINI IVAIIO	LINITICHI	
	5	E		ICATION	CLASSIF	

XS1 FROM LEFT BANK TO RIGHT BANK

XS4 LOOKING DOWNSTREAM

NOTES:

All cross—sections facing the downstream direction

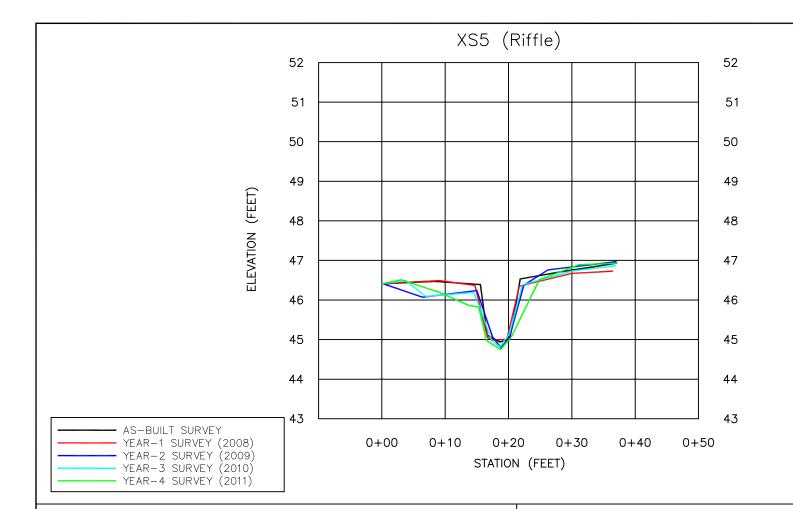
Survey Date	SEPT. 2011
Survey Weather	Sunny
Field Team	Schmid, Siceloff
Location	XS4

YEAR-4 MONITORING REPORT

HERTFORD COUNTY, NC

CROSS SECTION XS4-RIFFLE

Dwn. By:


Ckd. By: JWG OCT 2011 Scale:

NO SCALE

06-306

Project No.:

SHEET

	1				
		SUMMAF	RY DATA		
B	BANKFULL CROSS SECTIONAL AREA			5.	1 SQ. FT.
	BANKFUI	L WIDTH		7.	4 FT.
	BANKFULL I	MEAN DEPTH		0.	7 FT.
	BANKFULL	1.	1 FT.		
	WIDTH-DE	10	0.6		
	ENTRENCH	13	5.5		
	CLASSIF	E	5		
	22 (00)				-
1					

LPIN

RPIN

STATION ELEVATION FEATURE

46.41

STATION ELEVATION FEATURE

XS1 FROM LEFT BANK TO RIGHT BANK

XS5 LOOKING DOWNSTREAM

NOTES:

 All cross—sections facing the downstream direction

Survey Date	SEPT. 2011
Survey Weather	Sunny
Field Team	Schmid, Siceloff
Location	XS5

ATKINS

REVISIONS

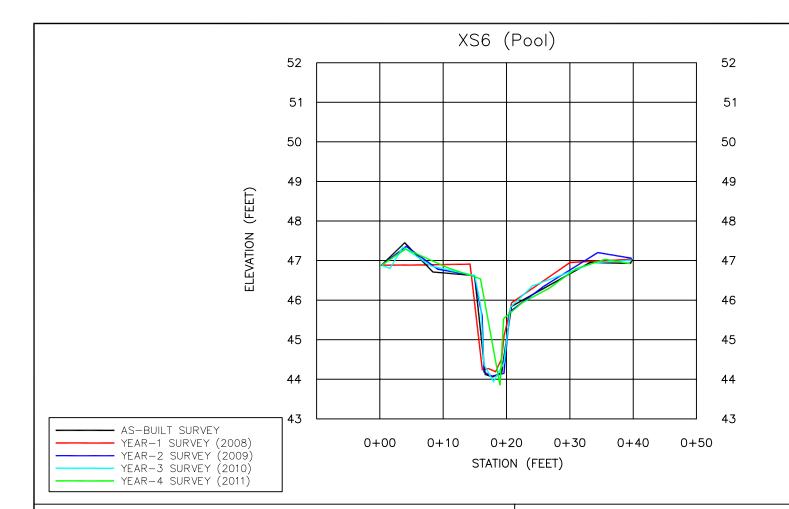
CUTAWHISKIE CREEK RESTORATION SITE

> YEAR-4 MONITORING REPORT

HERTFORD COUNTY, NC

Title:

CROSS SECTION XS5-RIFFLE


Dwn. By:

Ckd. By:		Date:
	JWG	OCT 2011
Scale:		,
		NO SCALE

Project No.:

06-306

SHEET

	SURVEY DATA					
	FEATURE	ELEVATION	STATION	FEATURE	ELEVATION	STATION
				LPIN	46.88	0.00
					47.29	3.81
ATKINS					46.8	10.77
					46.54 43.85	15.64 18.72
					45.53	19.29
					45.93	22.19
					46.31	26.58
					46.79	30.69
					47.03	35.29
				RPIN	46.92	39.28
REVISIONS						
Client:						
RESTORATION			Y DATA	SHMMAR		
SYSTEMS LLC	. co —	SUMMARY DATA POOL CROSS SECTIONAL AREA 9.6 SQ. FT.				
	b SQ. FI.	9.0		ECHONAL AREA	POOL CROSS S	
Project:	.9 FT.	12		WIDTH	POOL	
,	, _	<u> </u>		2001 USIN 2527		
CUTAWHISKIE	7 FT.	0		POOL MEAN DEPTH		
CREEK	7 FT.	2.	POOL MAX DEPTH			
			TOOL WAY DEL III			
RESTORATION	/A	N/	WIDTH-DEPTH RATIO			
0.75						

XS1 FROM LEFT BANK TO RIGHT BANK

XS6 LOOKING DOWNSTREAM

NOTES:

ENTRENCHMENT RATIO

All cross—sections facing the downstream direction

Survey Date	SEPT. 2011
Survey Weather	Sunny
Field Team	Schmid, Siceloff
Location	XS6

YEAR-4 MONITORING REPORT

SITE

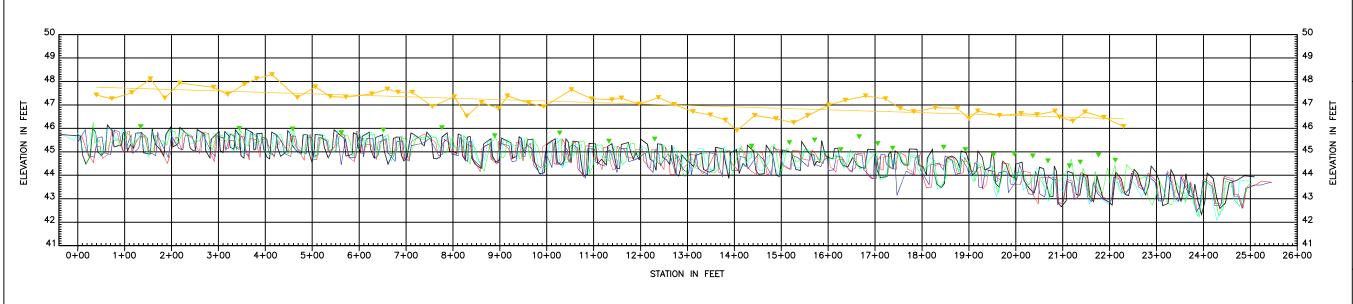
HERTFORD COUNTY, NC

N/A

N/A

CROSS SECTION XS6-POOL

Dwn. By:


Ckd. By: Date: JWG OCT 2011 Scale:

NO SCALE

06-306

Project No.:

SHEET

ATKINS

REVISIONS

Project:

CUTAWHISKIE CREEK RESTORATION SITE

> YEAR-4 MONITORING REPORT

HERTFORD COUNTY, NC

Title:

LONGITUDINAL PROFILE

Dwn. By:

- AS-BUILT SURVEY

- YEAR-1 SURVEY (2008)

- YEAR-2 SURVEY (2009)

YEAR-3 SURVEY (2010)

YEAR-4 SURVEY (2011)
YEAR-4 BANKFULL

YEAR-4 WATER SURFACE

 Ckd. By:
 Date:

 JWG
 OCT 2011

 Scale:
 OCT 2011

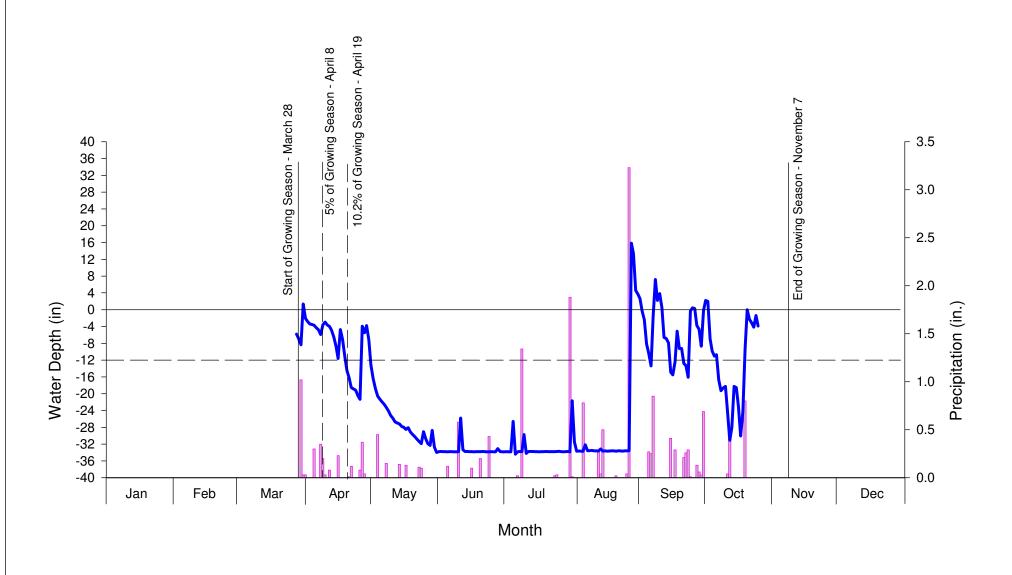
Project No.:

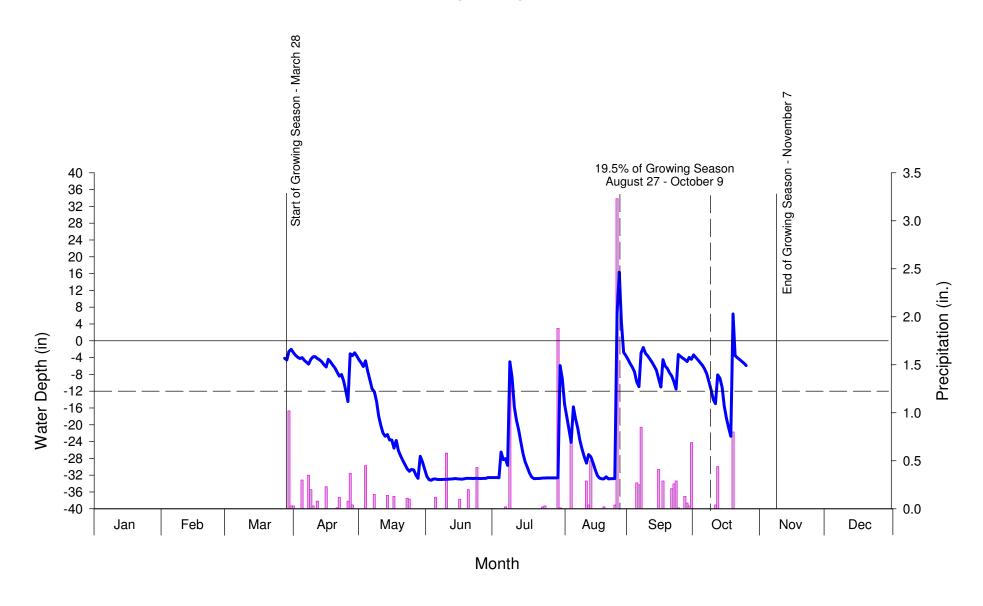
06-306

NO SCALE

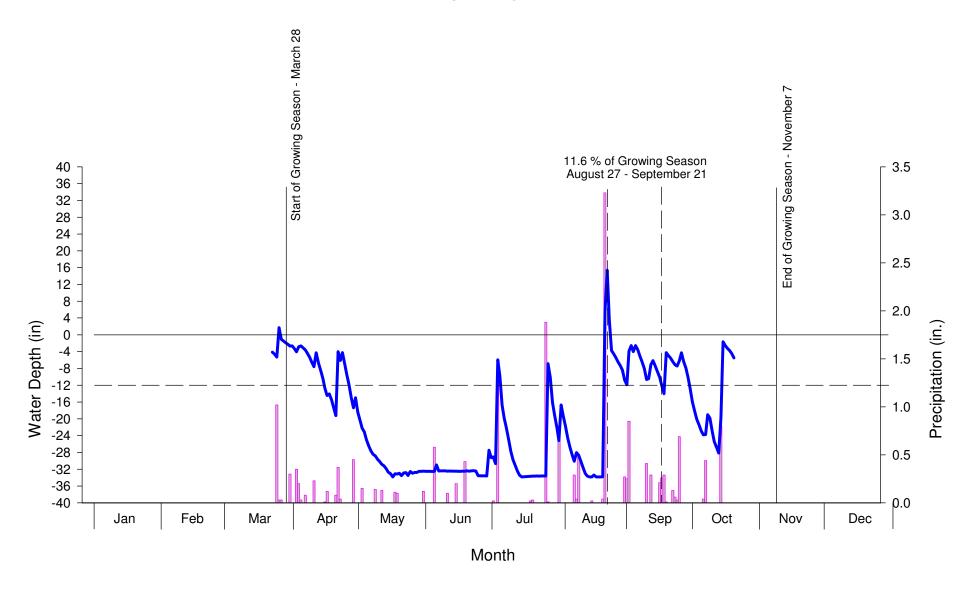
SHEET

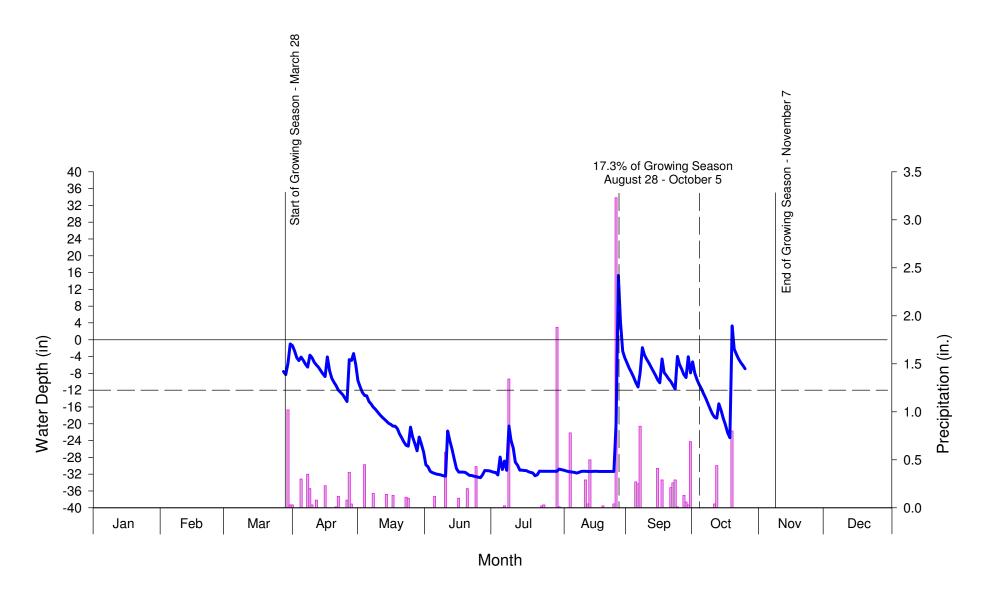
Bankfull Event 08-27-11: Year 4 Monitoring

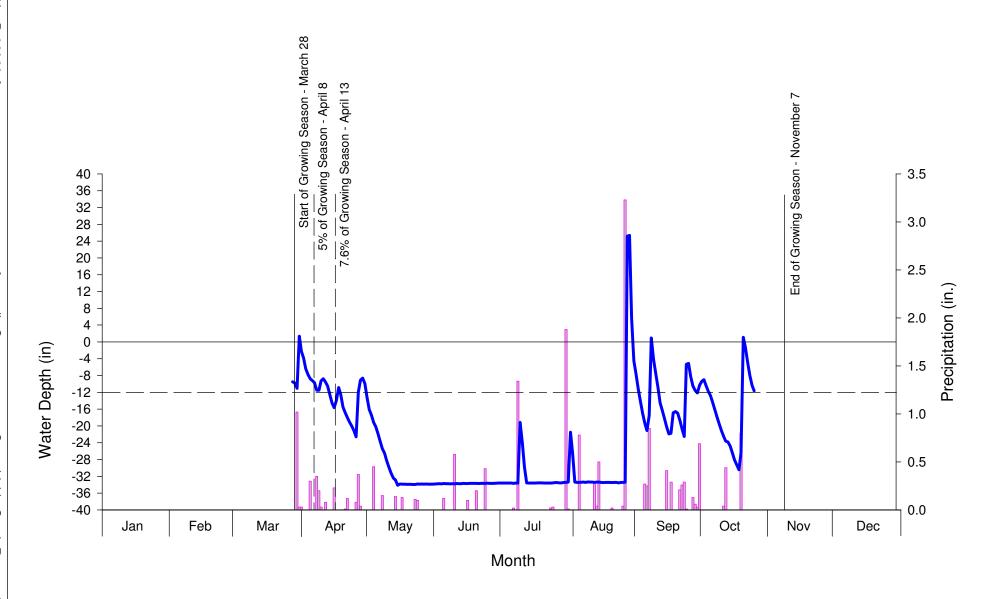

Photo 1. Hurricane Irene produced 5-7 inches of rain over the region during a 24 hour period. Evidence of a large bankfull event was seen while checking monitoring gauges. Herbaceous vegetation adjacent to the channel showed signs of being matted down from water flow. Wrack lines were found pressed against erosion matting stakes and woody vegetation.

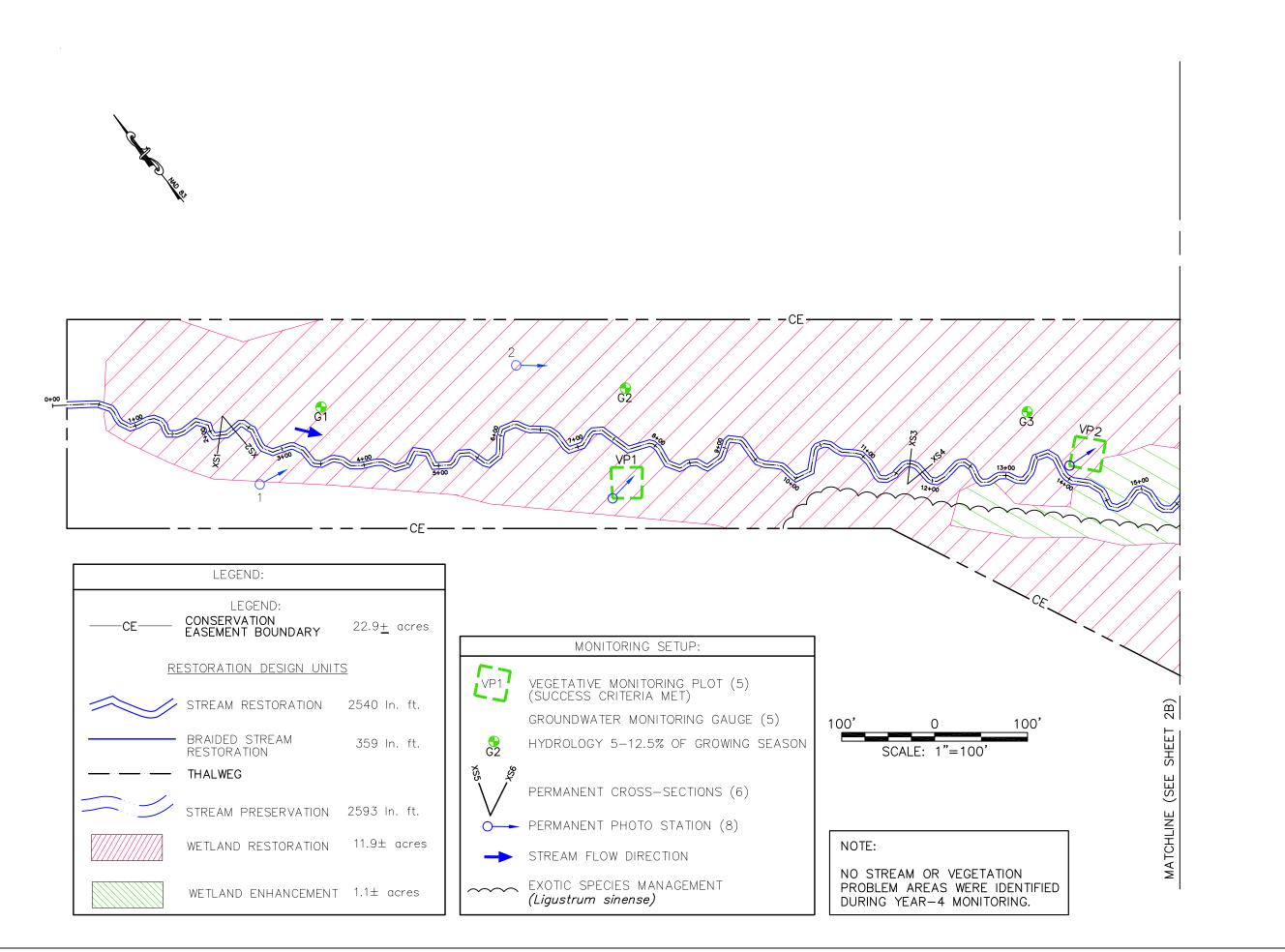

Photo 2. Floodplain wrack line looking from across channel.

APPENDIX C: WETLAND DATA HYDROGRAPHS


Cutawhiskie Creek Year-4 Monitoring - 2011 Monitoring Gauge 1: N47BAC28


Cutawhiskie Creek Year-4 Monitoring - 2011 Monitoring Gauge 2: N47BAB81


Cutawhiskie Creek Year-4 Monitoring - 2011 Monitoring Gauge 3: N47BABFE


Cutawhiskie Creek Year-4 Monitoring - 2011 Monitoring Gauge 4: N47BABD7

Cutawhiskie Creek Year-4 Monitoring - 2011 Monitoring Gauge 5: N47BABD7

APPENDIX D: CURRENT CONDITIONS PLAN VIEW NCEEP Contract No. D06066-A Appendix D 2011 Monitoring Report

ATKINS

REVISIONS

Client

Project

CUTAWHISKIE CREEK RESTORATION SITE

> YEAR-4 MONITORING REPORT HERTFORD COUNTY, NC

Title

CURRENT CONDITIONS PLAN VIEW

Dwn. By:	Ckd. By:
RLG	JW
Date:	Scale:
OCT 2011	AS SHOW
ESC Project	No.:

100004926

FIGURE

2A

ATKINS

REVISIONS

CUTAWHISKIE CREEK RESTORATION SITE

> YEAR-4 MONITORING REPORT HERTFORD COUNTY, NC

CURRENT CONDITIONS PLAN VIEW

Dwn. By: Ckd. By: OCT 2011 AS SHOWN ESC Project No.:

FIGURE

100004926